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overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from



“CVE-2008-0122: Off-by-one error in the
inet network function in libbind in ISC
BIND 9.4.2 and earlier, as used in libc in
FreeBSD 6.2 through 7.0-PRERELEASE,
allows context-dependent attackers to
cause a denial of service (crash) and
possibly execute arbitrary code via crafted
input that triggers memory corruption.”

“CVE-2007-2434: Buffer overflow in
asnsp.dll in Aventail Connect 4.1.2.13
allows remote attackers to cause a denial
of service (application crash) or execute
arbitrary code via a malformed DNS
query.”

“CVE-2007-2362: Multiple buffer
overflows in MyDNS 1.1.0 allow remote
attackers to (1) cause a denial of service
(daemon crash) and possibly execute
arbitrary code via a certain update, which
triggers a heap-based buffer overflow

in update.c; and (2) cause a denial of
service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-
based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer
overflow in eXtremail 2.1.1 and earlier
allows remote attackers to execute
arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer
overflow in the dns decode reverse name
function in dns decode.c in dproxy-nexgen
allows remote attackers to execute
arbitrary code by sending a crafted
packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer
overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from



in update.c; and (2) cause a denial of
service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-
based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer
overflow in eXtremail 2.1.1 and earlier
allows remote attackers to execute
arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer
overflow in the dns decode reverse name
function in dns decode.c in dproxy-nexgen
allows remote attackers to execute
arbitrary code by sending a crafted
packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer
overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from



in update.c; and (2) cause a denial of
service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-
based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer
overflow in eXtremail 2.1.1 and earlier
allows remote attackers to execute
arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer
overflow in the dns decode reverse name
function in dns decode.c in dproxy-nexgen
allows remote attackers to execute
arbitrary code by sending a crafted
packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer
overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number



in update.c; and (2) cause a denial of
service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-
based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer
overflow in eXtremail 2.1.1 and earlier
allows remote attackers to execute
arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer
overflow in the dns decode reverse name
function in dns decode.c in dproxy-nexgen
allows remote attackers to execute
arbitrary code by sending a crafted
packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer
overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number



in update.c; and (2) cause a denial of
service (daemon crash) via unspecified
vectors that trigger an off-by-one stack-
based buffer overflow in update.c.”

“CVE-2007-2187: Stack-based buffer
overflow in eXtremail 2.1.1 and earlier
allows remote attackers to execute
arbitrary code via a long DNS response.”

“CVE-2007-1866: Stack-based buffer
overflow in the dns decode reverse name
function in dns decode.c in dproxy-nexgen
allows remote attackers to execute
arbitrary code by sending a crafted
packet to port 53/udp.”

“CVE-2007-1748: Stack-based buffer
overflow in the RPC interface in the
Domain Name System (DNS) Server
Service in Microsoft Windows 2000 Server
SP 4, Server 2003 SP 1, and Server 2003

SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number



SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number



SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to



SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to



SP 2 allows remote attackers to execute
arbitrary code via a long zone name
containing character constants represented
by escape sequences.”

“CVE-2007-1465: Stack-based buffer
overflow in dproxy.c for dproxy 0.1
through 0.5 allows remote attackers to
execute arbitrary code via a long DNS
query packet to UDP port 53.”

“CVE-2006-5781: Stack-based buffer
overflow in the handshake function in
iodine 0.3.2 allows remote attackers to
execute arbitrary code via a crafted DNS
response.”

“CVE-2006-4251: Buffer overflow in
PowerDNS Recursor 3.1.3 and earlier
might allow remote attackers to execute
arbitrary code via a malformed TCP
DNS query that prevents Recursor from

properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to



properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to



properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows



properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows



properly calculating the TCP DNS query
length.”

“CVE-2006-3441: Buffer overflow in the
DNS Client service in Microsoft Windows
2000 SP4, XP SP1 and SP2, and Server
2003 SP1 allows remote attackers to
execute arbitrary code via a crafted
record response. NOTE: while MS06-041
implies that there is a single issue, there
are multiple vectors, and likely multiple
vulnerabilities, related to (1) a heap-
based buffer overflow in a DNS server
response to the client, (2) a DNS server
response with malformed ATMA records,
and (3) a length miscalculation in TXT,
HINFO, X25, and ISDN records.”

“CVE-2005-2315: Buffer overflow in
Domain Name Relay Daemon (DNRD)
before 2.19.1 allows remote attackers to
execute arbitrary code via a large number

of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows



of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows



of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers



of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers



of large DNS packets with the Z and QR
flags cleared.”

“CVE-2005-0033 Buffer overflow in the
code for recursion and glue fetching in
BIND 8.4.4 and 8.4.5 allows remote
attackers to cause a denial of service
(crash) via queries that trigger the
overflow in the q usedns array that tracks
nameservers and addresses.”

“CVE-2004-1485: Buffer overflow in the
TFTP client in InetUtils 1.4.2 allows
remote malicious DNS servers to execute
arbitrary code via a large DNS response
that is handled by the gethostbyname
function.”

“CVE-2004-1317: Stack-based buffer
overflow in doexec.c in Netcat for
Windows 1.1, when running with the
-e option, allows remote attackers to

execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers



execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers



execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used



execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used



execute arbitrary code via a long DNS
command.”

“CVE-2004-0836: Buffer overflow in the
mysql real connect function in MySQL
4.x before 4.0.21, and 3.x before 3.23.49,
allows remote DNS servers to cause a
denial of service and possibly execute
arbitrary code via a DNS response with a
large address length (h length).”

“CVE-2004-0150: Buffer overflow in the
getaddrinfo function in Python 2.2 before
2.2.2, when IPv6 support is disabled,
allows remote attackers to execute
arbitrary code via an IPv6 address that
is obtained using DNS.”

“CVE-2003-1377: Buffer overflow in
the reverse DNS lookup of Smart IRC
Daemon (SIRCD) 0.4.0 and 0.4.4 allows

remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used



remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used



remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”



remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”



remote attackers to execute arbitrary
code via a client with a long hostname.”

“CVE-2002-1219: Buffer overflow in
named in BIND 4 versions 4.9.10 and
earlier, and 8 versions 8.3.3 and earlier,
allows remote attackers to execute
arbitrary code via a certain DNS server
response containing SIG resource records
(RR).”

“CVE-2002-0910: Buffer overflows in
netstd 3.07-17 package allows remote
DNS servers to execute arbitrary code via
a long FQDN reply, as observed in the
utilities (1) linux-ftpd, (2) pcnfsd, (3)
tftp, (4) traceroute, or (5) from/to.”

“CVE-2002-0906: Buffer overflow in
Sendmail before 8.12.5, when configured
to use a custom DNS map to query
TXT records, allows remote attackers

to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”



to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”



to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”

“CVE-2002-0332: Buffer overflows in
xtell (xtelld) 1.91.1 and earlier, and 2.x
before 2.7, allows remote attackers to
execute arbitrary code via (1) a long
DNS hostname that is determined using
reverse DNS lookups, (2) a long AUTH
string, or (3) certain data in the xtell
request.”

“CVE-2002-0180: Buffer overflow in
Webalizer 2.01-06, when configured to
use reverse DNS lookups, allows remote
attackers to execute arbitrary code by
connecting to the monitored web server
from an IP address that resolves to a
long hostname.”

“CVE-2002-0163: Heap-based buffer
overflow in Squid before 2.4 STABLE4,
and Squid 2.5 and 2.6 until March
12, 2002 distributions, allows remote
attackers to cause a denial of service,



to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
is obtained via a reverse DNS lookup.”

“CVE-2002-0332: Buffer overflows in
xtell (xtelld) 1.91.1 and earlier, and 2.x
before 2.7, allows remote attackers to
execute arbitrary code via (1) a long
DNS hostname that is determined using
reverse DNS lookups, (2) a long AUTH
string, or (3) certain data in the xtell
request.”

“CVE-2002-0180: Buffer overflow in
Webalizer 2.01-06, when configured to
use reverse DNS lookups, allows remote
attackers to execute arbitrary code by
connecting to the monitored web server
from an IP address that resolves to a
long hostname.”

“CVE-2002-0163: Heap-based buffer
overflow in Squid before 2.4 STABLE4,
and Squid 2.5 and 2.6 until March
12, 2002 distributions, allows remote
attackers to cause a denial of service,



to cause a denial of service and possibly
execute arbitrary code via a malicious
DNS server.”

“CVE-2002-0825: Buffer overflow in
the DNS SRV code for nss ldap before
nss ldap-198 allows remote attackers to
cause a denial of service and possibly
execute arbitrary code.”

“CVE-2002-0698: Buffer overflow in
Internet Mail Connector (IMC) for
Microsoft Exchange Server 5.5 allows
remote attackers to execute arbitrary
code via an EHLO request from a system
with a long name as obtained through a
reverse DNS lookup, which triggers the
overflow in IMC’s hello response.”

“CVE-2002-0684: Buffer overflow in DNS
resolver functions that perform lookup of
network names and addresses, as used

in BIND 4.9.8 and ported to glibc 2.2.5
and earlier, allows remote malicious DNS
servers to execute arbitrary code through
a subroutine used by functions such as
getnetbyname and getnetbyaddr.”

“CVE-2002-0651: Buffer overflow in the
DNS resolver code used in libc, glibc,
and libbind, as derived from ISC BIND,
allows remote malicious DNS servers to
cause a denial of service and possibly
execute arbitrary code via the stub
resolvers.”

“CVE-2002-0423: Buffer overflow in
efingerd 1.5 and earlier, and possibly up
to 1.61, allows remote attackers to cause
a denial of service and possibly execute
arbitrary code via a finger request from
an IP address with a long hostname that
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Keep track (often via queue file)
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Many disastrous bugs here.
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